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LETTER TO THE EDITOR 

Neglecting local-field effects in the band-offset problem 

Gerard0 Ortizi, Raffaele Resta$ and Alfonso Balderexhis 
Institut Romand de Recherche NumCrique en Physique des MatCriaux, PHB-Ecublens, 
CH-1015 Lausanne, Switzerland 

Received 25 July 1990 

Abstract. We investigate the electronic screening at semiconductor heterojunctions, and 
through calculations over selected systems we show that local-field effects are capable of 
affecting the band offset by some tenths of an eV. Our results indicate the limits of accuracy 
attainable with models that emphasize the line up of some reference level and implicitly use 
only macroscopic screening. 

In spite of the significant effort that has been devoted to the understanding of the physical 
mechanisms which govern potential discontinuities at semiconductor interfaces, several 
important issues are still open. Although the importance of fermionic response at 
the interface is generally recognized, arguments currently used are mostly based on 
macroscopic linear screening. A popular class of models (RLMS) is based on the pinning 
of a suitable reference level [l-41: they use only bulk properties of the constituent 
materials-this results in orientation independence and transitivity of potential line 
ups-and the concept of macroscopic dielectric screening. One of these RLMS uses the 
latter just to put all semiconductors on a common absolute energy scale [Z] (metallic 
screening), while the others use the value of the dielectric constant explicitly [3,4] or a 
suitable screening factor [ 11 for predicting the band-edge discontinuities. The validity 
of the macroscopic and linear screening assumptions has never been investigated until 
now. The aim of this communication is to study up to what point microscopic screening 
can be neglected in the band-offset problem. 

There is no general agreement-and even some confusion [5] in the literature- 
about the very starting point: what are the ‘screening medium’, the ‘bare’ perturbation 
and the ‘screened’ perturbation? In order to relate to the traditional theory of screening, 
we proceed as follows: we assume that the screening medium is some reference system 
having no interface; we then change the chemical nature of some atoms in order to build 
the actual interface; the electrons of the reference system respond to this perturbation, 
and this is precisely the screening process we wish to investigate. 

In all-electron schemes the problem can be attacked in this way only if the chemical 
transformation involves isocoric atoms; otherwise linear response is out of the question 
since it is unable to account for core relaxation. General transformations can be handled 
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assuming a pseudopotential viewpoint and studying the response of the valence electrons 
only, We notice that such a logical step is implicit in most RLMS, and in particular is 
crucial to the arguments of Tersoff [2]. 

We consider as a specific example the heterovalent GaAs/Ge (110) lattice-matched 
interface. Choice of the non-polar (110) orientation is made in order to avoid charged 
interfaces [6-81, which introduce unnecessary complications in this work. In this case, 
the reference crystal is CA, where C is the virtual (i.e. average) cation (Ga)l,z(Ge)l/2, 
and A is the virtual anion (As)l/2(Ge)l/2. The unperturbed periodic crystal is chosen 
arbitrarily in principle, our choice being that which minimizes the strength of the 
perturbation. The actual interface is built by chemical substitutions in this reference 
system: each virtual cation C is transformed into Ga (or Ge), and each virtual anion A 
is replaced by As (or Ge). Recent calculations [6-81 have shown that first-principles 
linear-response theory (LRT) gives a very good description of the electronic charge 
density for this case, as well as for other lattice-matched heterojunctions. 

The striking success of LRT in the band-offset problem is owed basically to the fact 
that the valence charge density responsible for the effect is a tiny fraction of the total 
charge. The accuracy is further enhanced by the choice of the reference crystal: in fact 
the quadratic terms (responsible for the strongest non-linear effect) are in this way 
minimized [ 81. 

The LRT calculations performed to date for the band-offset problem [8] do not 
separate the electronic response into macroscopic and microscopic terms, and hence do 
not allow one to check the ideas upon which RLMS are based. Nevertheless-once the 
linear screening problem is stated in the form given above-such separation can be 
performed. The response of a periodic medium to any bare perturbation V,,,, generates 
a screened perturbation V given in reciprocal space by 

V ( q  + G) = (q + G; q + G’)Vbare(q + G’) 
G’ 

where is the inverse dielectric matrix. The Umklupp effects due to off-diagonal 
elements of E - ~  go under the name of local-field effects and reflect the microscopic 
inhomogeneity of a real solid [9]. When applying LRT to an interface problem, the 
screened potential has a l / q  singularity at low q (and G = 0), and the coefficient of l /q 
is proportional to the electrostatic potential line up in which we are interested. Use of 
macroscopic screening amounts to approximating E - ~  in equation (1) with a diagonal 
response, i.e.: 

V(q) 2: Vbare(q)/E, (2) 
where E, is the electronic dielectric constant of the reference system. Such an approxi- 
mation has apparently been assumed without discussion [ 101 in all of the RLMS. In the 
long-wavelength limit q+ 0, the exact expression, equation (l), is re-cast in the form 

q- 0 

V ( q )  = Vbbare(q)/E, + ALF(q)  (3) 
where the local field contribution is given by 

Both terms on the right-hand side of equation (3) contribute to the leading l / q  term and 
hence to the band offset. This fact demonstrates how the microscopic oscillating part of 
the bare perturbation gives a macroscopic contribution to the screened potential line 
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up. It is clear that the relative magnitude between macroscopic and local-field effects 
will depend on both the response of the reference crystal and the strength of the 
perturbing potential. We also notice that equation (3) can be interpreted both in a 
pseudopotential sense and in an all-electron sense; the latter case however only applies 
to isocoric bare perturbations vb,,,. 

To study macroscopic as well as local-field effects at the GaAs/Ge (110) interface, 
we performed self-consistent calculations for a periodically repeated 3 + 3 supercell 
with 12 atoms per unit cell and cubic lattice constant a. = 10.50 au. We used the density 
functional formalism [ l l ]  in the local approximation [12], a kinetic energy cut off of 
14 Ryd and the Ceperley-Alder exchange-correlation energy [ 131; k-space integrations 
have been performed with the special point technique. The LRT results have been 
obtained using the ‘direct’ method; by difference of two independent calculations. This 
procedure gives linear and non-linear terms together: technically the linear term is 
extracted by considering a suitably reduced bare perturbation, and then rescaling the 
screened result to unit strength. More details are given in [6-81; the results presented 
here have been obtained along the same lines. 

The physical quantities in which we are interested (i.e. charge densities and poten- 
tials) are periodic in the xy-planes parallel to the interface. In order to subtract off bulk 
effects and to enhance the interface features, we use the concept of macroscopic average 
[14, 81, which is basic to both classical and quantum electrodynamics [15]. The macro- 
scopic quantity f(z) is obtained from its microscopic counterpart f(r) through a con- 
volution integral: 

wherep is the linear period andf(z) is the planar average off(r) * the xy-plane. For-an 
&solated interbce the discontinuity of the physical quantity P ( z )  is given by Af= 
f(z + - m) - T(z + E). In our supercell calculation, we obtain the discontinuity as the 
difference between f values evaluated at points where bulk-like properties are repro- 
duced in each slab of material, which requires the use of a sufficiently thick supercell in 
the z direction. 

We now present the results obtained for GaAs/Ge (110) using two different types 
of ion-core pseudopotentials: the Berkeley local potentials [ 161 and the non-local norm- 
conserving pseudopotentials [17]. We start from the local potentials for which the bare 
macroscopic discontinuity is uniquely defined. The planar and macroscopic averages of 
the bare perturbation V,,,, are shown in figure l(a) for the Berkeley local potentials 
[16]; the bare discontinuity is given by - 

Avb, , ,  = Aff = CYG, + ( Y A ~  - 2 & ~ ,  (6) 
where a; is defined as 

in terms of the pseudopotenttial V(J) of atomj, its core charge Zjlel and the cell volume 
sz .  

In the self-consistent solution, electrons polarize in response to the bare pertur- 
bation; the result is shown in figure l(b). In the neighbourhood of the interface the 
electron distribution manifestly differs from in the bulk, its macroscopic average showing 
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Figure 1. ( a )  Planar and macroscopic averages of 
the bareionicperturbationforthe GaAs/Ge(llO) 
interface,and(b) macroscopicaverageof theelec- 
tron density and Hartree potential. The results 
have been obtained with the local pseudo- 
potentials of [16]. 
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Figure 2. Macroscopic average of the electron 
density and Hartree potential for the GaAs/Ge 
(1 10) interface. The norm-conserving pseudo- 
potentials of [17] are used here. 

a dipole which is the origin of tl-g potential shift. We are interested in the drop inthe 
total self-consistent potential ATT, which is the sum of threeterms: the bare (ATba,,, 
equation (6)),Hartree (AV,), and exchangecorrelation (AVxc) discontinuities,Our 
results are: ATba,, = 0.49 eV (figure l(a)); AVH = -0.78 eV (figure 1@)) and ATxc = 
-0.001 eV. Therefore the total self-consistent potential line up is ATT = -0.29 eV. 
Assuming the validity of the macroscopic-screening model, the electrons would readjust 
so as to produce a potential drop at the interface which is just the bare %ne divided by 
the dielectric constant E ,  of the reference crystal, i.e. hTT,model  = AVbare/&,, Con- 
sidering - that in our case [6-81 E ,  - 2(&;,haAs + &;,he)-' - 12.5, the model total line up 
is AVT,mode] = 0.04 eV and, following equation (3) which can be recast as 

we obtained a local-field contribution ALF(GaAs/Ge) = -0.33 eV. We conclude that 
local-field effects cannot be neglected in this test case. 

In the ideal situation, corresponding to ATT = 0 (metallic-screening assumption), 
we would have found the reference level with respect to which we could measure energies 
and ergo we would have solved the band-offset problem. This is indeed the point of 
view of Tersoff [2]. Because of overscreening, it is evident that the metallic-screening 
assumption gives a better description than the macroscopic-screening one. Nevertheless 
our results indicate that local-field effects have to be taken into account, and that the 



Letter to the Editor 10221 

simple model described above and based on either macroscopic or metallic screening is 
not generally valid. 

We discuss now the results obtained for GaAs/Ge (110) using modern norm-con- 
serving pseudopotentials [ 171. The resulting value for the electrostatic potential dis- 
continuity is [7] AVH = 0.22 eV, and practically coincides with the discontinuity of the 
total electronic potential, since the exchange-correlation term is negligible as in the 
previous case. The radial part of norm-conserving pseudopotentials is angular-momen- 
tum depgndent [ 171, which is a complication in our analysis of the screening mechanisms 
since AVbare is not defined. However, the GaAs/Ge system discussed here is a par- 
ticularly simple case, its constituents being isocoric atoms. In fact, since the non-local 
contribution to the ionic pseudopotential originates from core orthogonalization, we 
expect the difference between the Ga, As and Ge pseudopotentials-and hence the bare 
perturbation Vbare-to be essentially local: this has been checked by calculating the 
quantity ha separately for the different /-components of Vbare: we get (in eV) A a o  = 
-0.151, A a ,  = -0.143, A a z  = -0.152, and AaI,2  = -0.167. Therefore the bare dis- 
continuity, although not exactly defined, can be assumed to be AVbbare = -0.155 k 
0.012 eV, where the error bar is intrinsic to the non-locality. Using this value within 
diagonal screening, one gets 

AvH,model = ((l/&=) - l)AVbare = 0.14 k 0.01 eV 

which amounts to a local-field contribution 
- - 

ALF = AV, - AVH,model = 0.08 7 0.01 eV. 

Though in this calculation the absolute magnitude of the local-field contribution to the 
line up is smaller than in the previous one (i.e. for the local pseudopotentials), its value 
represents a sizeable fraction of the whole effect. 

To provide additional evidence of the relevance of local-field effects we present 
results for the AlP/Si (110) interface obtained with norm-conserving pseudopotentials 
[17] and a cubklattice constant uo = 10.26 au. The calculated electrostatic discontinuity 
amounts to AVH = 0.12 eV. We observe that, in this case too, the atomic constituents 
are isocoric and the perturbation is essentially local. Proceeding as described above we 
obtain a bare discontinuity AVbare = -0.07 * 0.03 eV and assuming E, - 10, the local- 
field contribution is ALF = 0.06 7 0.03 eV. We notice that the local field contribution to 
the potential line up is relatively more important in this case than in GaAs/Ge. This is 
not surprising since local-field effects are more important in less metallic systems. 

All results presented above have been obtained using first-principles LRT. In order 
to check the validity of the LRT results, we also performed standard supercell SCF 
calculations; the results of the latter are in excellent agreement with LRT predictions, 
the accuracy being better than 0.01 eV for all the systems studied. The same accuracy 
was found in [6-81. 

We have so far discussed the relevance of local-field effects in the context of the 
popular models based on alignment of reference levels [ 1-41, Models have been proposed 
where the concept of charge distribution is the basic one [18,14,19]. The present work 
has little to say with respect to them, simply because they are not related to a traditional 
screening problem: in these models either there is no screening at all [18, 141, or the 
‘screening medium’ has a built-in interface [19]. 

In conclusion, we have investigated, in selected examples, the validity of the macro- 
scopic screening ansatz, which is crucial to all RLMS. We have shown that, although 
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macroscopic screening gives a qualitative picture of charge readjustment at the interface, 
the microscopic-field contributions cannot always be acritically neglected [ 10]-in fact 
they can possibly be of the same order of magnitude as the band offset itself. 

One of us (G 0) thanks Paolo Giannozzi for his help in the computational aspects of 
this work. This work was supported in part by the Swiss National Science Foundation 
under Grant No. 20-5446.87. 
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